Chapitre 19 : Variables aléatoires réelles finies

Calculs de loi, de fonction de répartition, d'espérance et de variance

Exercice 1 : On dispose d'un dé à 6 faces non truqué. Il possède une face portant le chiffre 1, 2 faces portant le chiffre 2 et 3 faces portant le chiffre 3. On le lance et on note X le chiffre obtenu. Donner la loi de X, sa fonction de répartition et calculer son espérance et sa variance.

- Exercice 2: On lance 6 fois un dé non pipé et on note X le nombre de 6 obtenus au cours de ces lancers.
 - 1. Calculer la loi de X. Représenter cette loi par un tableau puis par un diagramme en bâtons.
 - 2. Calculer la fonction de répartition de X.
 - 3. Calculer son espérance et sa variance.
 - 4. Déterminer la loi de la var $Y = (X 3)^2$.
 - 5. On considère $g: x \mapsto \cos(\pi x)$ et on pose Z = g(X). Déterminer l'espérance de la var Z.

Exercice 3: Soit $n \in \mathbb{N}^*$ et $\lambda \in \mathbb{R}$. On considère une varf X prenant ses valeurs dans l'ensemble [1, n] et telle que, pour tout $k \in [1, n]$: $P([X = k]) = \lambda k$.

- 1. Déterminer λ .
- 2. Calculer alors E(X) et V(X).

Exercice 4 : Soit $\theta \in \left[0, \frac{1}{2}\right]$ et X une varf à valeurs dans [0, 3] dont la loi de probabilité est donnée par

$$P([X = 0]) = P([X = 3]) = \theta$$
 $P([X = 1]) = P([X = 2]) = \frac{1}{2} - \theta$.

- 1. Donner la fonction de répartition de X.
- 2. Calculer l'espérance et la variance de X.
- 3. On pose R = X(X-1)(X-2)(X-3). Donner la loi de probabilité de R.
- 4. Donner la loi de probabilité des varf suivantes

$$S = \frac{(1-X)(2-X)(3-X)}{6}$$
 $T = \frac{X(3-X)}{2}$ $V = \frac{X(X-1)(X-2)}{6}$.

Exercice $\mathbf{5}$: On lance deux dés distincts à 6 faces équilibrés. On note X le plus grand numéro et Y le plus petit numéro.

- 1. Déterminer les lois et les fonctions de répartition de X et de Y.
- 2. Calculer E(X) et E(Y) et comparer ces espérances.
- 3. Calculer V(X) et V(Y).

Exercice 6: Un tireur doit toucher n cibles $(n \in \mathbb{N}^*)$ numérotées de 1 à n dans l'ordre et il s'arrête dès qu'il rate une cible. On suppose que s'il se présente devant la k-ième cible, la probabilité qu'il la touche est $p_k \in]0, 1[$. On note X le nombre de cibles touchées.

- 1. Déterminer la loi de X.
- 2. On suppose que, pour tout $k \in [1, n], p_k = p$.
 - (a) Déterminer la loi de X en fonction de p et de q = 1 p.
 - (b) Pour tout $t \in [0,1]$, on définit la fonction génératrice associée à X par

$$G_X(t) = E(t^X).$$

Justifier que $G'_X(1) = E(X)$ et en déduire l'espérance de X ainsi que la limite de E(X) quand n tend vers $+\infty$.

$$\forall t \in \mathbb{R}, \quad F(t) = \begin{cases} 0 & \text{si } t < -2 \\ \frac{1}{4} & \text{si } -2 \le t < 0 \\ \frac{1}{2} & \text{si } 0 \le t < 3 \\ \frac{2}{3} & \text{si } 3 \le t < 4 \\ 1 & \text{si } t \ge 4. \end{cases}$$

- 1. Tracer la courbe représentative de F.
- 2. Soit X une varf ayant F pour fonction de répartition. Calculer alors P([X < 1]), P([X < 1]) et P([-2 < X < 0]).
- 3. Déterminer aussi la loi de X, son espérance et sa variance.
- 4. Soit Y et Z les varf définies par $Y = \frac{X}{2}$ et Z = X + 2. Déterminer les fonctions de répartition de Y et de Z et tracer leurs courbes représentatives sur le même graphique que F.

X Exercice 8 : Soit X une varf sur un espace probabilisé fini $(\Omega, \mathcal{P}(\Omega), P)$ dont l'univers image est donné par $X(\Omega) = \llbracket 0, n
rbracket$. On note F_X sa fonction de répartition.

- 1. Pour tout $k \in [0, n]$, exprimer P([X < k]) et P([X > k]) à l'aide de F_X .
- 2. Généraliser ce résultat à une var finie quelconque.

 \mathbb{K} Exercice 9 : On considère une suite de tirages avec remise dans une urne contenant N boules numérotées de 1 à N. Pour tout $n \geq 1$, on note Y_n le nombre de numéros non encore sortis à l'issue du n-ième tirage.

- 1. Déterminer Y_1 .
- 2. Soit n > 2.
 - (a) Justifier que $Y_n \leq N 1$.
 - (b) Montrer en utilisant la formule des probabilités totales que pour tout $k \in [0, N-1]$, on a

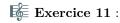
$$P(Y_n = k) = \frac{N - k}{N} P(Y_{n-1} = k) + \frac{k+1}{N} P(Y_{n-1} = k+1).$$

3. En déduire que la suite $(E(Y_n))_{n\geq 1}$ est une suite géométrique et en déduire l'expression explicite de $E(Y_n)$ pour tout

Exercice 10: Un magicien possède une pièce truquée qui renvoie pile avec probabilité $\frac{1}{3}$ et face avec probabilité $\frac{2}{3}$. Il lance la pièce n fois, et on note X la fréquence d'apparition du pile au cours de ces n lancers.

- 1. Déterminer la loi de X, ainsi que son espérance et sa variance.
- 2. On note p_n la probabilité que l'erreur entre X et son espérance soit supérieure à 0.1. Calculer le nombre de lancers nà effectuer pour que p_n soit inférieure à 0.2.

Lois usuelles



- 1. Soit $X \hookrightarrow \mathcal{U}(q)$ avec $q \in \mathbb{N}^*$ telle que E(X) = 5. Déterminer q.
- 2. Soit $Y \hookrightarrow \mathcal{B}(n,p)$ avec $n \in \mathbb{N}^*$ et $p \in [0,1]$ telle que $E(X) = \sigma(X) = \frac{3}{4}$. Déterminer n et p.

Exercice 12 : Pour chacune des variables aléatoires décrites ci-dessous, donner la loi exacte, l'espérance et la variance :

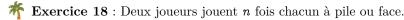
- 1. Nombre de pile au cours du lancer de 20 pièces truquées dont la probabilité d'obtenir face est 0.7
- 2. On tire successivement et avec remise 8 cartes d'un jeu de 52 et on s'intéresse au nombre de carreaux.
- 3. On lance 5 dés.
 - (a) On s'intéresse au nombre de 6.
 - (b) On s'intéresse au numéro obtenu avec le premier dé.
- 4. Nombre de filles dans les familles de 6 enfants sachant que la probabilité d'obtenir une fille est 0.51.
- 5. Nombre annuel d'accidents à un carrefour donné, sachant qu'il y a chaque jour une chance sur 125 d'accident.

- 6. Nombre de voix d'un des candidats à une élection présidentielle lors du dépouillement des 100 premiers bulletins dans un bureau de vote.
- 7. On range au hasard 20 objets dans 3 tiroirs. Nombre d'objets dans le premier tiroir.
- 8. Un sac contient 26 jetons sur lesquels figurent les 26 lettres de l'alphabet. On en aligne 5 au hasard. Nombre de voyelles dans ce mot.
- 9. Un enclos contient 15 lamas, 15 dromadaires et 15 chameaux. On sort un animal au hasard de cet enclos. Nombre de bosses.
- 10. On suppose que 1% des trèfles possèdent 4 feuilles. On cueille 100 trèfles. Nombre de trèfles à 4 feuilles cueillis.
- 11. Il y a 128 boules numérotées de 1 à 128. On en tire 10 parmi les 128, puis on en tire une parmi les 10. On s'intéresse au numéro de la boule obtenue
- Exercice 13 : Lors d'un concours d'équitation, un cavalier effectue un parcours de 2000 mètres à la vitesse de 10 km/h. Il doit franchir 10 obstacles indépendats les uns des autres. La probabilité de franchir un obstacle est de $\frac{3}{5}$.
 - 1. On note X la varf qui désigne le nombre d'obstacles franchis sans fautes par le cavalier. Déterminer la loi, la fonction de répartition, l'espérance et la variance de X.
 - 2. On suppose que si le cavalier franchit un obstacle sans faute, il ne perd pas de temps et qu'il perd 30 secondes sinon. Calculer le temps moyen d'un parcours.

Exercices plus généraux

- **Exercice 14**: Un jeune homme écrit à une jeune fille au cours d'une année non bissextile. Il adopte la résolution suivante : le jour de l'an, il lui écrit à coup sûr. S'il lui a écrit le jour i, il lui écrit le lendemain avec une probabilité $\frac{1}{2}$. S'il ne lui a pas écrit le jour i, il lui écrit le lendemain à coup sûr. Soit X_i la varf de Bernouilli valant 1 si le jeune homme écrit le jour i et 0 sinon.
 - 1. Former une relation de récurrence entre $P([X_{i+1}=1])$ et $P([X_i=1])$.
 - 2. En déduire la loi de X_i pour tout $i \in [1, 365]$.
 - 3. Soit X la varf égale au nombre de lettres envoyées dans l'année. Calculer E(X).
- Fixercice 15 : On considère une urne de taille N > 1 contenant r boules blanches et N r boules noires (0 < r < N). Dans cette urne, on prélève les boules une à une et sans remise jusqu'à l'obtention de toutes les boules blanches et on note X le nombre de tirages qu'il est nécessaire d'effectuer pour cela.
 - 1. (a) Traiter le cas N = 4 et r = 1.
 - (b) Traiter le cas N=4 et r=2.
 - (c) Dans le cas r = 1, reconnaître la loi de X. Donner son esprérance. Même question dans le cas r = N. On revient désormais au cas général 1 < r < N.
 - 2. Calculer l'univers image de X.
 - 3. Soit k une de ces valeurs.
 - (a) Déterminer la probabilité qu'au cours des k-1 premiers tirages soient apparus r-1 boules blanches.
 - (b) Vérifier que : $P([X = k]) = \frac{\binom{k-1}{r-1}}{\binom{N}{r}}$.
 - 4. Calculer l'espérance et la variance de X.
- **Exercice 16**: Une puce se déplace sur un axe par sauts indépendants et d'amplitude 1, aléatoirement vers la gauche ou la droite. Soit X_n sa position après n sauts (elle commence à la position 0). Soit Y_n le nombre de fois où elle a sauté vers la droite au cours des n premiers sauts.
 - 1. Donner la loi de Y_n .
 - 2. Après avoir exprimé X_n en fonction de Y_n , donner la loi de X_n .
 - 3. On suppose que n est pair. Quelle est la probabilité p_n que la puce revienne à son point de départ après n sauts? Etudier la convergence de la suite $(p_n)_{n\in\mathbb{N}}$
 - On admettra la formule de Stirling : $n! \underset{+\infty}{\sim} \frac{n^n \sqrt{2\pi n}}{e^n}$.
- **Exercice 17**: Une urne contient n boules: m sont blanches et les autres sont noires $(1 \le m < n)$. On effectue des tirages sans remise jusqu'à ce que l'on ait obtenu toutes les boules blanches. On note Y le nombre de tirages effectués.

- 1. Pour tout $i \in [0, n]$, on note X_i le nombre de boules blanches obtenues au cours des i premiers tirages. Quelle est la loi de X_i ?
- 2. Exprimer, pour tout $k \in [2, n]$, l'événement $[Y \leq k]$ en fonction de X_k .
- 3. En déduire la loi de Y.
- 4. On suppose m=1, donner explicitement la loi de Y.
- 5. Même question si m = 2.



- 1. Calculer la probabilité qu'ils obtiennent le même nombre de piles.
- 2. Calculer la probabilité pour qu'un joueur obtienne un nombre de piles strictement plus grand que l'autre.

Exercice 19: Une urne contient initialement deux boules rouges et une boule bleue indiscernables au toucher. L'expérience aléatoire consiste à effectuer une succession illimitée de tirages selon le protocole suivant : on tire une boule de l'urne puis

- si la boule tirée est bleue, on la remet dans l'urne
- si la boule tirée est rouge, on ne la remet pas dans l'urne mais on remet une boule bleue dans l'urne à sa place.

Pour tout entier naturel n non nul, on note Y_n la var égale au nombre de boules rouges présentes dans l'urne à l'issue du n-ième tirage. On notera de plus les événeemnts suivants :

- R_k : lors du k-ième tirage, on a extrait une boule rouge de l'urne
- ullet B_k : lors du k-ième tirage, on a extrait une boule bleue de l'urne
 - 1. Donner la loi de probabilité de Y_1 .
 - 2. Soit $n \geq 2$. Donner l'univers image de Y_n .
 - 3. Calculer pous tout $n \in \mathbb{N}^*$: $P([Y_n = 2])$.
 - 4. On pose pour tout $n \in \mathbb{N}^*$: $u_n = P([Y_n = 1])$.
 - (a) Donner u_1 et u_2 .
 - (b) Montrer que, pour tout $n \ge 2$, on a : $u_{n+1} = \frac{2}{3}u_n + \frac{2}{3^{n+1}}$. Cette relation reste-elle valable pour n = 1?
 - (c) On pose pout tout $n \in \mathbb{N}^*$: $v_n = u_n + \frac{2}{3^n}$. Exprimer v_{n+1} en fonction de v_n , en déduire l'expression de v_n en fonction de v_n
 - (d) Déduire des résultats précédents $P([Y_n = 0])$ pour tout n entier naturel non nul.
 - 5. Calculer l'espérance de Y_n .
 - 6. Montrer que : $P([Y_n > 0]) \leq E(Y_n)$. Que peut-on dire que $\lim_{n \to +\infty} P([Y_n = 0])$?
- 7. On note Z la varf égale au numéro du tirage amenant la dernière boule rouge.
 - (a) Donner l'univers image de Z.
 - (b) Soit k un entier naturel, $k \geq 2$. Exprimer l'événement [Z=k] en fonction des variables Y_k et Y_{k-1} .
 - (c) En déduire la loi de Z.