Chapitre 5 : Sommes et Produits

Factorielle

Exercice 1: Soit $n \in \mathbb{N}$, $n \geq 3$. Simplifier les nombres suivants :

$$B = \frac{3 \times 4!}{(3!)^2} \quad C = \frac{n!}{(n-1)!} \quad D = \frac{(n+1)!}{(n-3)!} \quad E = \frac{(n+1)!}{(n-2)!} + \frac{n!}{(n-1)!} \quad F = \frac{n!(n+3)!}{(n-2)!(n-3)!} \quad G = \frac{(n-1)!}{(n+1)!} + \frac{n!}{(n+2)!} + \frac{n!}{(n+2)!} = \frac{(n+1)!}{(n-2)!} + \frac{n!}{(n-2)!} + \frac{n!}{(n-2)!} = \frac{(n+1)!}{(n-2)!} + \frac{(n+1)!}{(n-2)!} = \frac{(n+1)!}{(n-2)!} + \frac{(n+1)!}{(n-2)!} = \frac{(n+1)!}{(n-2)!} = \frac{(n+1)!}{(n-2)!} + \frac{(n+1)!}{(n-2)!} = \frac{(n+1)!}{(n-2)!} = \frac{(n+1)!}{(n-2)!} + \frac{(n+1)!}{(n-2)!} = \frac{(n+1)!$$

Calcul de sommes (I et II)

Exercice 2: Soit $n \in \mathbb{N}^*$ et a, b des réels, $b \neq 0$. Calculer les expressions suivantes :

1.
$$\sum_{k=0}^{n} x^{2k}$$

8.
$$\sum_{k=1}^{n} (3 \times 2^{k} + 1)$$
 15. $\sum_{i=1}^{n} {n+1 \choose i} (-1)^{i}$

15.
$$\sum_{i=1}^{n} {n+1 \choose i} (-1)^{i}$$

$$2. \sum_{k=0}^{n} x^{2k+1}$$

9.
$$\frac{1}{n}\sum_{k=0}^{n-1}\exp\left(\frac{k}{n}\right)$$

9.
$$\frac{1}{n} \sum_{j=0}^{n-1} \exp\left(\frac{k}{n}\right)$$
 16. $\sum_{j=0}^{n} {n \choose j} \frac{(-1)^{j-1}}{2^{j+1}}$

3.
$$\sum_{k=0}^{n} a^k 2^{3k} x^{-k}$$
 avec $x \neq 0$

$$17. \sum_{k=0}^{n-1} \frac{1}{3^k} \binom{n}{k}$$

4.
$$\sum_{i=0}^{n} (i^2 + n + 3)$$

11.
$$\sum_{k=1}^{n} 2^{2k+1}$$

18.
$$\sum_{k=0}^{n} \left(3k - 4 + 5k^2 - (-1)^{k+4} 3^{2k-1} + {n \choose k} (-2)^{k+1} \frac{1}{3^{k+2}} \right)$$

$$5. \sum_{j=8}^{21} \frac{2j-5}{6}$$

12.
$$\sum_{i=0}^{n} 3(i+1)i$$

19.
$$\sum_{k=1}^{n} \left(-k - 1 + 6k^3 + (-2)^{2k+3} 2^{k-1} + \binom{n}{k} (-1)^{k+1} \frac{3}{2^{k+2}} \right)$$
20.
$$\sum_{k=0}^{n} \left(k - 2k^2 + 5 + \frac{2^{2k-1}}{5^{k-1}} + \binom{n}{k} \frac{2^{k+1}}{3^{k+2}} \right)$$

6.
$$\sum_{i=1}^{n} (2i-1)^3$$

$$13. \sum_{j=0}^{n} \binom{n}{j} a^{j}$$

20.
$$\sum_{k=0}^{n} \left(k - 2k^2 + 5 + \frac{2^{2k-1}}{5^{k-1}} + \binom{n}{k} \frac{2^{k+1}}{3^{k+2}} \right)$$

$$7. \sum_{k=0}^{n} \frac{p}{q+1}$$

14.
$$\sum_{j=1}^{n+1} \binom{n}{j} a^j$$

21.
$$\sum_{k=0}^{n-1} \left(k + (-1)^{3k+1} 2^{k-1} + {n \choose k} (-2)^{2k+1} \right)$$

Exercice 3 : Avec la formule des chefs

Calculer les sommes suivantes :

$$\sum_{j=0}^{n} j \binom{n}{j}, \quad \sum_{i=0}^{n} \frac{1}{i+1} \binom{n}{i}, \quad \sum_{k=1}^{n} k(k-1) \binom{n}{k}.$$

Exercice 4 : Sommes téléscopiques

- 1. Soit x_0, x_1, \ldots, x_n des nombres réels avec $n \in \mathbb{N}$. Calculer : $\sum_{i=1}^{n} (x_{i+1} x_i)$ et $\sum_{i=1}^{n} (x_{i+1} x_{i-1})$.
- 2. Calculer: $\sum_{n=0}^{\infty} \ln \left(1 + \frac{1}{p}\right)$
- 3. Calculer: $\sum_{k=2}^{n} \ln \left[\frac{k^2}{(k+1)(k-2)} \right]$

Exercice 5 : Sommes trigonométriques

Calculer les sommes suivantes :

1.
$$S_1 = \sum_{k=0}^{n} \cos(a + kx)$$
 avec a et x réels fixés.

5.
$$S_7 = \sum_{k=0}^n \cos^3(kx)$$
 avec $x \in \mathbb{R}$.

2.
$$S_2 = \sum_{k=0}^{n} {n \choose k} \cos(kx)$$
 et $S_3 = \sum_{k=0}^{n} {n \choose k} \sin(kx)$ avec $x \in \mathbb{R}$. 6. $S_8 = \sum_{k=0}^{n} {n \choose k} \cos^2(kx)$ avec $x \in \mathbb{R}$.

6.
$$S_8 = \sum_{k=0}^n \binom{n}{k} \cos^2(kx)$$
 avec $x \in \mathbb{R}$.

3.
$$S_4 = \sum_{k=0}^{n} {n \choose k} \cos(y + kx)$$
 avec $(x, y) \in \left] 0, \frac{\pi}{2} \right[^2$.

7.
$$S_9 = \sum_{k=0}^n \frac{\cos(kx)}{\cos^k x}$$
 et $S_{10} = \sum_{k=0}^n \frac{\sin(kx)}{\cos^k x}$ avec $x \not\equiv \frac{\pi}{2} [\pi]$

4.
$$S_5 = \sum_{k=0}^{n-1} \sin^2(kx)$$
 et $S_6 = \sum_{k=0}^{n-1} \cos^2(kx)$ avec $x \in \mathbb{R}$.

8.
$$S_{11} = \sum_{k=0}^{n} \frac{\cos(2k)}{3^k}$$

Exercice 6: Soit $n \in \mathbb{N}^*$ et $S = \sum_{k=1}^n k \binom{n}{k}$. On donne ici deux méthodes différentes permettant de calculer S.

1. Méthode 1 : Avec la formule des chefs.

Calculer S directement en utilisant une propriété des coefficients binômiaux. De la même façon, calculer alors $T = \sum_{k=1}^{n} k(k-1) \binom{n}{k}$ puis $\sum_{k=1}^{n} k^2 \binom{n}{k}$ (on pourra écrire que $k^2 = k(k-1) + k$).

- 2. Méthode 2 : En dérivant.
 - (a) On pose, pour tout x dans \mathbb{R} , $f(x) = \sum_{k=0}^{n} {n \choose k} x^k$. Calculer f(x).
 - (b) En déduire, pour tout x dans \mathbb{R} , la valeur de $g(x) = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1}$.
 - (c) En déduire S.

X Exercice 7 :

Sommes doubles (III)

Exercice 8 : Dans cet exercice, n, m et p sont deux entiers naturels non nuls et x un nombre complexe. Calculer les

1.
$$\sum_{p=0}^{n} \sum_{q=0}^{m} p(q^2 + 1)$$

$$5. \sum_{i=1}^{n} \sum_{j=1}^{i} x^j$$

$$2. \sum_{i=1}^{n} \sum_{j=1}^{n} 1$$

6.
$$\sum_{k=0}^{n^2} \sum_{i=k}^{k+2} ki^2$$

3.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} i2^{j}$$

7.
$$\sum_{j=1}^{n} \sum_{i=0}^{j} \frac{x^{i}}{x^{j}}$$

4.
$$\sum_{k=0}^{n} \sum_{l=k}^{n} \frac{k}{l+1}$$

8.
$$\sum_{i=1}^{n} \sum_{j=i}^{n} {j \choose i}$$

Produits (IV)

Exercice 9: Soit $(n, p, i) \in \mathbb{N}^2$ non nuls. Calculer les produits suivants :

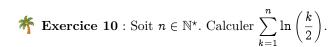
$$1. \prod_{k=1}^{n} k$$

$$3. \prod_{k=1}^{n} \exp\left(\frac{k}{n}\right)$$

$$2. \prod_{k=i}^{i+n} k$$

$$4. \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$$

5. $\prod_{k=0}^{p-1} \frac{n-k}{p-k}$. On exprimera le résultat à l'aide de factorielles.



- **Exercice 11**: Soit $n \in \mathbb{N}^*$.
 - 1. Simplifier le produit suivant : $\prod_{k=1}^{n} \frac{2k+3}{2k-1}$.
 - 2. Écrire, à l'aide de factorielles, le produit des nombres pairs de 2 à 2n puis le produit des nombres impairs de 1 à 2n+1.
- Exercice 12: En notant $P_n = \prod_{k=0}^n \binom{n}{k}$, calculer, pour tout $n \in \mathbb{N}^*$, $\frac{P_n}{P_{n-1}}$.