Programme de colle BCPST 1 Semaine $1: du\ 22/09/25$ au 26/09/25

Chapitre 1 : Logique, ensembles, raisonnement

1. Logique:

Opérateurs logiques (non, et, ou, ⇒ et ⇔), tables de vérité, règles de composition.

Savoir passer du langage français au langage mathématique.

Savoir nier une assertion.

2. Méthodes de démonstration :

Méthodes avec l'implication ou l'équivalence : méthode directe, par double implication, par contraposée, par l'absurde ou trouver un contre-exemple. Principe de récurrence (simple, double et fort).

3. Ensembles et logique:

Notation des ensembles, quantificateurs.

4. Opérations sur les ensembles :

Inclusion, égalité d'ensembles, union, intersection, complémentaire, produit cartésien d'ensembles, ensemble des parties d'un ensemble, système complet.

Chapitre 2 : Nombres réels

1. Nombres réels :

Description de \mathbb{R} , relation d'ordre, intervalles.

- 2. Manipulation d'inégalités :
 - Égalités, inégalités et composition par une fonction strictement monotone, partie entière, valeur absolue (au sujet de la valeur absolue, seule sa définition et quelques applications ont été vues pour l'instant).

Questions de cours

Démonstrations de cours à connaître :

- Toutes les démonstrations avec les tables de vérité $(\text{non}(P \Rightarrow Q) \Leftrightarrow (P \text{ et non } Q), \text{ une implication est équivalente à sa contraposée, non } (P \text{ ou } Q) \Leftrightarrow (\text{non } P) \text{ et } (\text{non } Q), \text{ etc.})$
- La démonstration des propriétés suivantes.

Propriété

Soit f une fonction définie sur un intervalle I de \mathbb{R} , d'intérieur non vide.

On a alors les propriétés suivantes.

- i) Si f est strictement croissante sur $I: \forall (a,b) \in I^2, a \leq b \Leftrightarrow f(a) \leq f(b)$
- ii) Si f est strictement croissante sur $I : \forall (a, b) \in I^2$, $a < b \Leftrightarrow f(a) < f(b)$.
- iii) Si f est strictement croissante sur $I: \forall (a,b) \in I^2$, $a=b \Leftrightarrow f(a)=f(b)$.
- iv) Si f est strictement décroissante sur $I: \forall (a,b) \in I^2, a \leq b \Leftrightarrow f(a) \geq f(b)$.
- v) Si f est strictement décroissante sur $I: \forall (a,b) \in I^2$, $a < b \Leftrightarrow f(a) > f(b)$.
- vi) Si f est strictement décroissante sur $I: \forall (a,b) \in I^2, \quad a=b \Leftrightarrow f(a)=f(b)$.
- Donner une fonction croissante sur un intervalle I qui ne l'est pas strictement, et ne vérifie pas 🚓